
1

A Level Computer Science

Curriculum Intent 2021-2022

Core aims of the subject at Key Stage 5
Computer Science is a demand subject in a globally competitive world. It has become an ever-growing part of human life, affecting many

aspects of a person’s day. Computer systems are embedded ubiquitously in everyday devices, smart phones, washing machines, heating

systems and vehicles, as our world embraces “The Internet of Things”. Computer scientists have an impact on how our society advances by

developing and maintaining these systems: whether it be for our home, work, learning or entertainment environments. Computer Science is an

exciting and rapidly evolving subject that offers excellent employment prospects and well-paid careers.

The curriculum ensures learners have sufficient knowledge to stay safe online and use computers safely in life. We want students to not only

understand how to use technology effectively, safely and responsibly, but also how technology is developed and constantly redeveloped into

new and exciting tools. The curriculum continues to focus on developing resilient learners who are able to recover from mistakes and

effectively solve problems. This will help develop a lifelong effect of learning and how to develop themselves further and prepare for the future.

The course is theoretical content, however there is also a lot of opportunities to build projects and challenging opportunities to develop

programming skills.

The curriculum is developed so that students are taught the principles of problem solving and computation, which prepares you to solve the

problems of tomorrow, by developing learner’s knowledge, skills and understanding through key computational concepts and

experience. Develop understanding for all the technology that surrounds them by not just understanding how computer systems work, but how

to put this knowledge to use through programming and problem solving. Building on this knowledge and understanding, students are

equipped to use information technology to create programs, systems and a range of content. Students will also analyse problems in

computational terms and devise creative solutions by designing, writing, testing and evaluating programs. This also ensures that students

become digitally literate – able to use, and express themselves and develop their ideas through, information technology – at a level suitable

for the future workplace and as active participants in a digital world. We endeavour to make the curriculum as fun and interesting as possible

with a high level of challenge by offering breadth and depth of experiences for the students. Our aim is to ensure that you develop and

achieve ICT capability that is directly transferable, not only to other subjects, but also beyond, developing a wide range of digital skills that will

prepare you for the future.

The rationale of the KS5 curriculum is for students to develop the mind-set of a computer scientist built upon the foundations at KS3 and KS4.

Learners have the opportunity to develop their capability, creativity and knowledge in computer science. The topics have been chosen based

2

on the GCSE specification and are planned to dedicate time to each of them, allowing plenty of time for revision and future preparation for the

exams.

This course is aimed to prepare students with the knowledge, skills and confidence to be ready for the next stage of their life either in further

education or career.

The curriculum provides challenges and new experiences in computing, digital literacy and digital media (regardless of their prior knowledge

of using computers). Over the 2 years, students will continue in the development of programming skills and effectively apply the knowledge

learnt in earlier Algorithm and Programming units. Throughout refences to key events and developments through the history of technology

using role models from all aspects of society to be inspirational and motivational for students.

We aim to enable students to develop a love for the subject and an understanding that there are no limits to their own development in

programming and IT. To enthuse students to have an understanding far deeper than the interface that they currently operate. This is done by

offering challenging opportunities and personal development.

Our vision is to provide quality computing education to equip students to use computational thinking and creativity to understand and change

the world. Computing has deep links with mathematics, science, and design and technology, and provides insights into both natural and

artificial systems.

Irresistible and enriching learning by a wide range of educational experiences to engage, cultivate and extend lifelong effect of learning. All

students take part in challenging opportunities by completing The Bebras challenge and CyberFirst CyberStart competitions. The CyberFirst

Competition provides a fun and challenging environment to inspire the next generation of young people to consider a career in cyber security.

Students are given the opportunity to enter a range of National Competitions such as and CyberFirst and Cyber Centurion events.

Due to the forever changing world of technology the curriculum and skills need is taken into account. Staff are involved with the local primary
schools and the whole community including Computing at School and exam boards to ensure that the curriculum is achievable and forward
thinking, to ensure that students are equipped for their future pathways.

Assessment

3

Please see website for the formal internal assessment record.
Paper 1 On-screen exam, subject coverage:
 Fundamentals of programming
 Fundamentals of data structures
 Fundamentals of algorithms
 Theory of computation
 Written exam - students will be issued a preliminary material, a skeleton program (available in each of the programming languages) and,

where appropriate, test data, for use in the exam. 2 hours 30 minutes
 40% of A level exam

Paper 2 Written exam, subject coverage:
 Fundamentals of data representation
 Fundamentals of computer systems
 Fundamentals of computer organisation and architecture
 Consequences of uses of computing
 Fundamentals of communication and networking
 Fundamentals of databases
 Big Data
 Fundamentals of functional programming
 legal and environmental impacts of digital technology on wider society, including issues of privacy
 Written exam: 2 hours 30 minutes
 40% of A level exam
 Compulsory short-answer and extended-answer questions
 NEA Programming project
 20% of A level

Homework
Repl.it set homework for coding and theory practice
Clubs and/or intervention
Lunchtime drop-in sessions available. Extra revision available after school as needed.

Parental/Carer support
Parents/Carers can find the subject content and specification at: https://filestore.aqa.org.uk/resources/computing/specifications/AQA-7516-
7517-SP-2015.PDF

Helpful sources of information
https://www.aqa.org.uk/subjects/computer-science-and-it/as-and-a-level/computer-science-7516-7517 - exam board subject homepage
https://repl.it – programming practice challenges
https://w3schools.com – tutorials, references for programming languages

https://filestore.aqa.org.uk/resources/computing/specifications/AQA-7516-7517-SP-2015.PDF
https://filestore.aqa.org.uk/resources/computing/specifications/AQA-7516-7517-SP-2015.PDF
https://www.aqa.org.uk/subjects/computer-science-and-it/as-and-a-level/computer-science-7516-7517
https://repl.it/
https://w3schools.com/

4

www.codeacademy.com – learn technical skills in an interactive environment

Connections to future pathways
Careers: Software Developer, Information Security Analysts, Computer systems analyst, Computer and information systems manager,
Computer and information research scientists, Computer network architect, Network and computer systems administrators, Database
administrator, Web developer, Computer support specialist.

Future learning: Higher Apprenticeship, Degree

Year 12 Overview

Term Knowledge Assessment Connections to learning

Autumn
1

Computational thinking
Rationale: Understanding how computational thinking is the basis for problem solving. Understand the need to have different data

types in theory will help when using text-based programming languages.

 Different data types and how they are
used

 Basic arithmetic operations in a typical
programming language

 Basic string handling operations,
variables and constants

 Pseudocode solutions to simple
problems

 Relational operators and use of
Boolean operations AND, OR, NOT

 Nested selection statements
 Use of three different types of iterative

statement: WHILE, REPEAT and FOR
 Random number generation
 Structured approach to program

design and construction
 Construct and use hierarchy charts

when designing programs
 Data structure, 1- and 2-dimensional

arrays in the design of solutions to

 Teacher/pupil questioning
 Exam style question practice

(homework’s and in class)
 Knowledge Quizzes.
 Application of knowledge

understanding and skills using
pseudocode and programming

4.1 Fundamentals of programming
4.1.1 Programming
4.1.1.1 Data types
4.1.1.2 Programming concepts
4.1.1.3 Arithmetic operations
4.1.1.6 Constants and Variables
4.1.1.7 String handling
4.1.2 Programming paradigms
4.1.1.4 Relational operators
4.1.1.5 Boolean operators
4.1.1.8 Random number generation
4.1.2.3 Object-orientated programming (in
brief)
4.2 Fundamentals of data structures
4.2.1 Data structures and abstract types
4.2.1.1 Data structures
4.2.1.2 Single and multi-dimensional
arrays
4.2.1.3 Fields, records and files


http://www.codeacademy.com/

5

simple problems and the advantages
of the structured approach

 “Computational thinking” and the skills
involved

 Strategies for problem-solving, simple
logic problems and checking solutions

 Concept of abstraction and examples
 The purpose of testing, a test plan

using test data covering normal
(typical), boundary and erroneous data,
hand-trace algorithms

 Finite state machine, uses, draw and
interpret simple state transition
diagrams

 Draw a state transition table for a finite
state machine with no output

 Teacher/pupil questioning
 Application of knowledge

understanding and skills using
pseudocode and programming

 Exam style question practice
(homework’s and in class)

4.4 Theory of computation
4.4.1 Abstraction and automation
4.4.1.2 Following and writing algorithms
4.4.1.1 Problem Solving
4.4.2 Regular languages
4.4.2.1 Finite state machines (FSMs) with
and without output
4.13 Systematic approach to problem
solving
4.13.1 Aspects of software development
 4.13.1.4 Testing

Autumn
2

Programming Concepts
Rationale: Students need a theoretical understanding of all the topics in this section for the exams even if the programming

language(s) they have been taught do not support all topics. Understand Understanding the fundamentals of programming concepts.

 Subroutines, their uses and
advantages

 Subroutines that return values to the
calling routine

 Arguments/parameters to pass data
within programs

 Contrast the use of local and global
variables

 Define the terms field, record, file
 Read from and write to a text file and

read from and write to a binary file
 Use of exception handling in a program
 Categorise numbers as natural,

integer, rational, irrational, real or
ordinal.

 Teacher/pupil questioning
 Exam style question practice

(homework’s and in class)
 Application of knowledge

understanding and skills using
pseudocode and programming

4.1 Fundamentals of programming
4.1.1 Programming
4.1.1.10 Subroutines
4.1.1.11 Parameters of subroutines
4.1.1.12 Returning a value from a
subroutine
4.1.1.13 Local variables in a subroutine
4.1.1.14 Global variables in a
programming language
4.1.1.9 Exception handling
4.2 Fundamentals of data structures
4.2.1 Data structures and abstract types
4.2.1.3 Fields, records and files
4.5 Fundamentals of data
representation

6

 Understand how the base of a number
affects the format of the value it
represents.

 Convert between decimal, binary and
hexadecimal number systems.

 Data is stored and processed in a
computer system

 Bits and bytes, and use of names,
symbols and corresponding powers of
2 for binary prefixes (Ki, Mi,Ti etc.)

 Differentiate between the character
code of a decimal digit and its pure
binary representation

 ASCII and Unicode coding systems
and why Unicode was introduced

 Methods used for error-checking and
correction

 Add and multiply together two
unsigned binary numbers

 Convert between signed binary and
decimal and vice versa

 Represent positive and negative
numbers in two’s complement and
specify the range of n bits

 Subtraction using two’s complement
 Numbers with a fractional part can be

represented in binary
 Fixed point binary to represent a real

number in a given number of bits
 Fractional part can be represented in

floating point form
 Normalise un-normalised floating point

numbers with positive or negative
mantissas

 Calculate the absolute and relative
errors of numerical data stored and
processed in computer systems

 Compare fixed- and floating-point form

4.5.1 Number systems
4.5.2 Number bases
4.5.3 Units of information
4.5.4 Binary number system
4.5.6 Representing images, sound and
other data.


7

 Bitmapped images are represented in
terms of size in pixels, resolution and
colour depth. Storage requirements.

 Images contain metadata and be able
to describe typical metadata

 Audio signals can be stored and
transmitted in digital form

 Sampling rate and resolution and the
quality and size of an audio signal

 Error detection methods when
transmitting signals

 MIDI an alternative way of transmitting
audio

Spring
1

Computer systems
Rationale: Understand the role of hardware and software and how the structure of computer architecture and organisation is affected.

 Writing and interpreting algorithms
using pseudocode

 Internal components of a computer
system

 The role of the processor, main
memory, buses and I/O controllers and
how these components are connected
and how communication is controlled
between them

 The most appropriate computer
architecture for a given application

 Concept of addressable memory, the
stored program concept

 The role and operation of a processor
and its major components

 The stages of the Fetch-Execute cycle
and determine the roles of the various
processor registers in facilitating this

 Factors that affect the performance of
a processor

 The role of an instruction set within
processors

 Application of knowledge
understanding and skills using
pseudocode and programming

 Teacher/pupil questioning
 Exam style question practice

(homework’s and in class)

4.1 Fundamentals of programming
4.2 Fundamentals of data structures
4.3 Fundamentals of algorithms
4.3.4 Searching algorithms
4.3.5 Sorting algorithms
4.4 Theory of computation
4.4.1 Abstraction and automation
4.4.1.2 Following and writing algorithms
4.5 Fundamentals of data
representation
4.5.6 Representing images, sound and
other data
4.6 Fundamentals of computer systems
4.6.1 Hardware and software
4.6.1.4 Role of an OS
4.6.2 Classification of programming
languages
4.7 Fundamentals of computer
organisation and architecture
4.7.3 Structure and role of the processor
and its components


8

 The format of processor instructions
and the role various components
perform

 Direct and immediate addressing within
processor instructions

 How and why image, sound and text
data are compressed

 Lossy and lossless methods of
compression in terms of size and
accuracy of data

 Caesar and Vernam encryption
techniques in their suitability for
encrypting messages

 Hardware and software and
understand the relationship between
them

 System software and application
software

 The need for, and attributes of,
different types of software

 Function of operating systems, utility
programs, libraries and translators

 The role of an operating system is to
create a virtual machine to hide the
complexities of operation from the user

 The importance of resource
management and processor
scheduling

 Classification of programming
languages into low- and high-level
languages

 Low-level languages: machine-code
and assembly language

 ‘Imperative high-level language’ and its
relationship to low-level programming

Spring
2

Fundamentals of computer organisation and architecture
Rationale: How the structure and role of the processor and its components are within the architecture of the computer.

9

 Basic machine code operations
expressed in mnemonic-form assembly
language

 Apply immediate and direct addressing
modes

 Characteristics and principles of:
 Barcode readers
 Digital cameras
 Laser printers
 RFID
 The need for secondary storage within

a computer system
 The main characteristics and principles

of operations of:
 Hard disk
 Optical disk
 Solid-State Disk (SSD)
 The role of an assembler, compiler and

interpreter
 Bytecode is produced as the final

output by some compilers and how it is
subsequently used

 Source and object (executable) code
 Drawing and interpreting of logic gate

circuit diagrams involving multiple
gates, half-adder and a full-adder

 Edge-triggered D-type flip-flop as a
memory unit

 Use of Boolean identities and De
Morgan’s laws to manipulate and
simplify Boolean expressions

 Boolean expressions for a given logic
gate circuit, and vice versa

 Teacher/pupil questioning
 Exam style question practice

(homework’s and in class)
 Knowledge Quizzes
 Application of knowledge

understanding
 Summative end of year 12 exam paper

in the style of the A Level paper

4.6 Fundamentals of computer systems
4.6.2 Classification of programming
languages
4.6.3 Types of program translator
4.6.4 Logic gates
4.6.5 Boolean algebra
4.7 Fundamentals of computer
organisation and architecture
4.7.3 Structure and role of the processor
and its components
4.7.4 External hardware devices
4.7.4.1 Input and output devices


Summer
1

Networks
Rationale: Understand the fundamentals of communication and networking. Know what network architecture is and why it is
required.

 Serial and parallel transmission

methods
 Teacher/pupil questioning
 Exam style question practice

(homework’s and in class)

4.9 Fundamentals of communication
and networking
4.9.1 Communication

10

 Synchronous and asynchronous data
transmission

 Baud rate, bit rate, bandwidth, latency,
protocol

 Basic concepts of OOP
 Class
 Object
 Instantiation
 Encapsulation
 Inheritance, polymorphism and

overriding
 Concepts of aggregation
 Composition
 Association
 Object-oriented design principles:
 Encapsulate what varies
 Favour composition over inheritance
 Program to interfaces, not

implementation
 Draw and interpret class diagrams
 Aspects of software development
 Prototyping/agile approach that may be

used in the analysis, design and
implementation of a system

 Criteria for evaluating a computer
system

 Star and bus topologies for a local area
network, difference between physical
and logical network topologies

 Operation of physical star and bus
network topologies, advantages and
disadvantages of each

 Peer-to-peer and client-server
networking, situations might be used

 Advantages and drawbacks of cloud
computing

 Application of knowledge
understanding

4.9.2 Networking
4.9.2.1 Network topology
4.9.2.2 Types of networking between
hosts
4.1 Fundamentals of programming
4.1.2 Programming Paradigms
4.1.2.2 Procedural-oriented programming
4.1.2.3 Object-oriented programming
4.13 Systematic approach to problem
solving
4.13.1 Aspects of software development


Summer
2

Databases
Rationale: Understand the fundamentals of databases. The concept of databases and how SQL is used within programming to

access information.

11

 Purpose of Wi-Fi and the components
required for wireless networking. How
wireless networks are secured.
Wireless protocols CSMA/CA and
RTS/CTS

 The purpose of SSIDs
 Developments in digital technologies

enable organisations to monitor
behaviour, amass and analyse
personal information

 The potential for individual computer
scientists and software engineers, the
challenges facing legislators in the
digital age, as well as the
responsibilities

 The current capacity to distribute,
publish, communicate and disseminate
personal information.

 Software and their algorithms embed
moral and cultural values

 Entity descriptions representing a data
model in the form: Entity1 (Attribute1,
Attribute2…). Representing a data
model including: attribute, primary key,
composite primary key, foreign key

 Concept of a relational database,
normalise relations to third normal form

 SQL to retrieve data from multiple
tables of a relational database

 Teacher/pupil questioning
 Exam style question practice

(homework’s and in class)
 Application of knowledge

understanding and skills using SQL

4.9 Fundamentals of communication
and networking
4.9.1 Communication
4.9.2 Networking
4.9.2.3 Wireless networking
4.8 Consequences of uses of
computing
4.8.1 Individual (moral), social (ethical),
legal and cultural issues and opportunities
4.9 Fundamentals of communication
and networking
4.10 Fundamentals of Databases
4.10.1 Conceptual data models and entity
relationship modelling
4.10.2 Relational databases
4.10.3 Database design and normalisation
techniques
4.10.4 Structured Query Language (SQL)
4.10.5 Client server databases


Year 13 Overview

Term Knowledge Assessment Connections to learning

12

Autumn
1

 Programming Project
Rationale: The programming project allows students to develop their practical skills in a problem solving context by coding a

solution to a given problem and producing a report documenting the development of the solution.

 Application of programming skills to
given programming project

 concept of an abstract data type
 concept and uses of a queue
 creation and maintenance of data

within a queue (linear, circular, priority)
 Using a linear, circular and priority

queue
 Add an item
 Remove an item
 Test for an empty queue
 Test for a full queue
 A list may be implemented as a static

or dynamic data structure
 Items may be added to or deleted from

a list
 Concept and uses of a stack
 Creation and maintenance of data

within a stack
 Push, pop, peek (or top), test for

empty stack, test for full stack
 A stack frame is used with subroutine

calls to store return addresses,
parameters and local variables

 A hash table and its uses
 Simple hashing algorithms
 Collision and how collisions are

handled using rehashing
 Concept of a dictionary
 Simple applications of a dictionary
 A graph as a data structure used to

represent complex relationships and
typical uses

 Graph, weighted graph, vertex/node,
edge/arc, undirected graph, directed
graph

 Application of knowledge
understanding and skills using
pseudocode and programming

 This will challenge their knowledge
and application of the project

4.2 Fundamentals of Data Structures
4.2.1.4 Abstract data types/data
structures
4.2.2 Queues
4.2.2.1 Queues
4.2.1.4 Abstract data types/data
structures
4.2.1.2 Single- and multi-dimensional
arrays (or equivalent)
4.1 Fundamentals of programming
4.1.1.15 Role of stack frames in
subroutine calls

4.2.3.1 Stacks

4.2.6.1 Hash tables
4.2.7.1 Dictionaries

 4.2.4.1 Graphs

13

 An adjacency matrix and an adjacency
list may be used to represent a graph

 Compare the use of adjacency
matrices and adjacency lists

 Draw and interpret simple state
transition diagrams for FSMs with no
output and with output

 Draw and interpret simple state
transition tables for FSMs with no
output and with output

 Concept of a set and the notations
used for specifying a set and set
comprehension

 Compact representation of a set
 Concept of finite and infinite sets,

countably infinite sets, cardinality of a
finite set, Cartesian product of sets

 The meaning of the terms subset,
proper subset, countable set

 Set operations: membership, union,
intersection, difference

 Regular expression is a way of
describing a set

 Regular expressions allow particular
types of languages to be described in
a convenient shorthand notation

 Form and use simple regular
expressions for string manipulation
and matching

 The relationship between regular
expressions and finite state machines

 Write a regular expression to
recognise the same language as a
given FSM and vice versa

 The structure and use of Turing
machines that perform simple
computations

 Application of knowledge
understanding and skills

4.4 Theory of Computation
4.4.2 Regular languages
4.4.2.1 Finite state machines (FSMs) with
and without output
4.4.2.2 Maths for regular expressions
4.4.2.3 Regular expressions
4.4.2.4 Regular language
4.4 Theory of Computation
4.4.5 A model of computation
4.4.5.1 Turing machine
4.4.3 Context-free languages
4.4.3.1 Backus-Naur Form (BNF)/syntax
diagrams

4.3 Fundamentals of Algorithms
4.3.2 Tree-traversal
4.3.2.1 Simple tree-traversal algorithms
4.3.3 Reverse Polish
 4.3.3.1 Reverse Polish – infix

transformations

14

 A Turing machine can be viewed as a
computer with a single fixed program

 Transition rules using a transition
function or state transition diagram

 Hand-trace a simple Turing machine
 The importance of Turing machines

and the Universal Turing machine to
the subject of computation

 Backus-Naur Form (BNF) can be used
to represent language syntax and
formulate simple production rules

 BNF can represent some languages
that cannot be represented using
Regular Expressions

 A syntax diagram to represent an
equivalent BNF expression

 Convert simple expressions in infix
form to Reverse Polish Notation (RPN)
and vice versa

 Be aware of why and where RPN is
used

Autumn
2

Structure of the Internet
Rationale: Understand the structure of the Internet and how standards and protocols are put in place to ensure that information is

accessible and secure.

 Application of programming skills to

given programming project
 Application of knowledge

understanding and skills using
pseudocode and programming



 A tree is a connected, undirected
graph with no cycles

 A binary tree is a rooted tree in which
each node has at most two children

 Typical uses for rooted trees
 Concept of a vector and notations for

specifying a vector as a list of
numbers, as a function or as a
geometric point in space

 A vector using a list, dictionary or array
data structure

 Teacher/pupil questioning
 Application of knowledge

understanding and skills using
pseudocode and programming

 Exam style question practice
(homework’s and in class)

4.2 Fundamentals of Data Structures
4.2.1.4 Abstract data types/data
structures
4.2.5.1 Trees (including binary trees)
4.2.8.1 Vectors
4.1 Fundamentals of programming
4.1.1.16 Recursive techniques
4.4 Theory of Computation
4.4.4 Classification of algorithms
4.4.4.1 Comparing algorithms
4.3 Fundamentals of Algorithms

15

 Perform operations on vectors:
addition, scalar vector multiplication,
convex combination, dot or scalar
product

 The dot product to find the angle
between two vectors

 The use of recursive techniques in
programming languages

 Solve simple problems using recursion
 Trace recursive tree-traversal

algorithms: pre-order, post-order, in-
order

 The concept of a function as a
mapping from one set of values to
another

 The concept of constant, linear,
polynomial, exponential and
logarithmic functions

 The notion of permutation of a set of
objects or values

 The Big-O notation to express time
complexity

 Derive the time complexity of an
algorithm

 Trace and analyse the time complexity
of the linear search and binary search
algorithms

 Trace and analyse the time complexity
of the binary tree search algorithm

 Trace and analyse the time complexity
of the bubble sort algorithm

 Trace and analyse the time complexity
of the merge sort algorithm

4.3.2 Tree-traversal 4.3.2.1 Simple tree-
traversal algorithms
4.4.4.2 Maths for understanding Big-0
notation
4.4.4.3 Order of complexity
4.4.4.4 Limits of computation
4.4.4.5 Classification of algorithmic
problems
4.4.4.6 Computable and non-computable
problems
4.3.4 Searching algorithms
4.3.5 Sorting algorithms



 The structure of the Internet
 ‘Uniform Resource Locator’ (URL) in

the context of networking
 ‘Domain name’ and ‘IP address’
 How domain names are organised

 Teacher/pupil questioning
 Exam style question practice

(homework’s and in class)
 Application of knowledge

understanding and skills

4.9 Fundamentals of communication
and networking
4.9.3 The Internet
4.9.3.1 The Internet and how it works
4.9.3.2 Internet security

16

 The purpose and function of the
Domain Name Server (DNS) system

 The service provided by Internet
registries and why they are needed

 The role of packet switching and
routers

 The main components of a packet
 Where and why routers and gateways

are used
 How routing is achieved across the

Internet
 How a firewall works
 Symmetric and asymmetric encryption

and key exchange
 How digital signatures and certificates

are obtained and used
 Worms, Trojans and viruses and the

vulnerabilities that they exploit
 Improved code quality, monitoring and

protection can be used against such
threats

 The roles of the four layers in the
TCP/IP protocol stack and sockets

 MAC addresses
 The common protocols and the well‐

known ports they use
 Transferring files using FTP as an

anonymous and non‐anonymous user
 Secure Shell (SSH) is used for remote

management including the use of
application level protocols for sending
and retrieving email

 The role of an email server in sending
and retrieving email

 The role of a web server in serving up
web pages in text form

 The role of a web browser in retrieving
web pages and web page resources
and rendering these accordingly

4.9.4 The Transmission Control
Protocol/Internet Protocol (TCP/IP)
protocol
4.9.4.1 TCP/IP
4.9.4.2 Standard application layer
protocols
4.9.4.3 IP address structure
4.9.4.4 Subnet masking
4.9.4.5 IP standards
4.9.4.6 Public and private IP addresses
4.9.4.7 Dynamic Host Configuration
Protocol (DHCP)
4.9.4.8 Network Address Translation
(NAT)
 4.9.4.9 Port forwarding

17

 An IP address is split into a network
identifier and a host identifier part

 A subnet mask is used to identify the
network identifier part of the IP
address

 There are currently two standards of
IP address, (v4 and v6) and why v6
was introduced

 Routable and non‐routable IP
addresses

 The purpose and function of the
Dynamic Host Configuration Protocol
(DHCP) system

 Basic concepts of Network Address
Translation (NAT) and port forwarding
and why they are used

Spring 1
Fundamentals of communication and networking

Rationale: The necessity of fundamentals of communication and networking. Whether thick or thin client is best.

 tTace depth-first and breadth-first
algorithms and typical applications of
each

 Trace Dijkstra’s shortest path
algorithm

 Applications of the shortest path
algorithm

 Algorithmic complexity and hardware
impose limits on what can be
computed

 Algorithms may be classified as being
either tractable or intractable

 Some problems cannot be solved
algorithmically

 The Halting problem, and its
significance for computation

 Teacher/pupil questioning
 Exam style question practice

(homework’s and in class)
 Application of knowledge

understanding and skills using
pseudocode and programming

4.3 Fundamentals of algorithms
4.3.1 Graph-traversal
4.3.1.1 Simple graph-traversal algorithms
4.3.6 Optimisation algorithms
4.3.6.1 Dijkstra’s shortest path algorithm
4.4 Theory of Computation
4.4.4.4 Limits of computation
4.4.4.5 Classification of algorithmic
problems
4.4.4.6 Computable and non-computable
problems
 4.4.4.7 Halting problem

 The client server model
 The WebSocket protocol and know

why and where it is used

 Teacher/pupil questioning
 Exam style question practice

(homework’s and in class)

4.9 Fundamentals of communication
and networking
4.9.4 The Transmission Control
Protocol/Internet Protocol (TCP/IP)

18

 The principles of web CRUD
applications and Representational
State Transfer (REST)

 Compare JSON (JavaScript Object
Notation) with XML

 Compare and contrast thin‐client
computing with thick‐client computing

 Application of knowledge
understanding and skills using
pseudocode and programming

protocol
4.9.4.10 Client server model
4.9.4.11 Thin- versus thick-client
computing
4.9 Fundamentals of communication
and networking
4.9.3 The internet
4.9.4 The Transmission Control
Protocol/Internet Protocol (TCP/IP)
 protocol

Spring 2

Preparing for the exams
Rationale: You will be using the lessons to look at exam techniques, go through past papers, revising different topics and

reinforcing your learning in preparation for your two exams papers. Practice writing algorithms and using to answer questions.

 Exam skills and misconception
 What is meant by a programming

paradigm
 Function type, domain and co-domain
 What is meant by a first-class object

and how such an object may be used
 Evaluate simple functions
 Functional composition to combine two

functions
 Partial function application
 A function takes only one argument

which may itself be a function
 Higher-order functions, including map,

filter and fold
 A list is a concatenation of a head and

a tail, where the head is an element of
a list and the tail is a list

 An empty list
 Apply list operations:
 Return head/tail of list
 Test for empty list
 Return length of list
 Construct an empty list
 Prepend / append an item to a list
 That Big Data is a term used to

describe data whose volume is too

 Teacher/pupil questioning
 Exam style question practice

(homework’s and in class)
 Application of knowledge

understanding and skills using
pseudocode and programming

 Exampro

4.12 Fundamentals of functional
programming
4.12.1 Functional programming paradigm
4.12.2 Writing functional programs
4.12.3 Lists in functional programming

4.11 Big Data


19

large to fit on a single server and is
generally unstructured

 Features of functional programming
which make it suitable for analysing
Big Data

 Fact-based model for representing
data

 Graph schema for capturing the
structure of the dataset

Summer
1

Getting Ready for the exam
 Rationale: You will be using the lessons to look at exam techniques, go through past papers, revising different topics and
reinforcing your learning in preparation for your two exams papers. Practice writing algorithms and using to answer questions.

 Exam practise & skills  Practise exam papers and questions
 Timed responses
 Marking activities
 Examiner’s report
 Exampro

Summer2
External Exams

External exams begin

