
1

A Level Computer Science

Curriculum Intent 2021-2022

Core aims of the subject at Key Stage 5
Computer Science is a demand subject in a globally competitive world. It has become an ever-growing part of human life, affecting many

aspects of a person’s day. Computer systems are embedded ubiquitously in everyday devices, smart phones, washing machines, heating

systems and vehicles, as our world embraces “The Internet of Things”. Computer scientists have an impact on how our society advances by

developing and maintaining these systems: whether it be for our home, work, learning or entertainment environments. Computer Science is an

exciting and rapidly evolving subject that offers excellent employment prospects and well-paid careers.

The curriculum ensures learners have sufficient knowledge to stay safe online and use computers safely in life. We want students to not only

understand how to use technology effectively, safely and responsibly, but also how technology is developed and constantly redeveloped into

new and exciting tools. The curriculum continues to focus on developing resilient learners who are able to recover from mistakes and

effectively solve problems. This will help develop a lifelong effect of learning and how to develop themselves further and prepare for the future.

The course is theoretical content, however there is also a lot of opportunities to build projects and challenging opportunities to develop

programming skills.

The curriculum is developed so that students are taught the principles of problem solving and computation, which prepares you to solve the

problems of tomorrow, by developing learner’s knowledge, skills and understanding through key computational concepts and

experience. Develop understanding for all the technology that surrounds them by not just understanding how computer systems work, but how

to put this knowledge to use through programming and problem solving. Building on this knowledge and understanding, students are

equipped to use information technology to create programs, systems and a range of content. Students will also analyse problems in

computational terms and devise creative solutions by designing, writing, testing and evaluating programs. This also ensures that students

become digitally literate – able to use, and express themselves and develop their ideas through, information technology – at a level suitable

for the future workplace and as active participants in a digital world. We endeavour to make the curriculum as fun and interesting as possible

with a high level of challenge by offering breadth and depth of experiences for the students. Our aim is to ensure that you develop and

achieve ICT capability that is directly transferable, not only to other subjects, but also beyond, developing a wide range of digital skills that will

prepare you for the future.

The rationale of the KS5 curriculum is for students to develop the mind-set of a computer scientist built upon the foundations at KS3 and KS4.

Learners have the opportunity to develop their capability, creativity and knowledge in computer science. The topics have been chosen based

2

on the GCSE specification and are planned to dedicate time to each of them, allowing plenty of time for revision and future preparation for the

exams.

This course is aimed to prepare students with the knowledge, skills and confidence to be ready for the next stage of their life either in further

education or career.

The curriculum provides challenges and new experiences in computing, digital literacy and digital media (regardless of their prior knowledge

of using computers). Over the 2 years, students will continue in the development of programming skills and effectively apply the knowledge

learnt in earlier Algorithm and Programming units. Throughout refences to key events and developments through the history of technology

using role models from all aspects of society to be inspirational and motivational for students.

We aim to enable students to develop a love for the subject and an understanding that there are no limits to their own development in

programming and IT. To enthuse students to have an understanding far deeper than the interface that they currently operate. This is done by

offering challenging opportunities and personal development.

Our vision is to provide quality computing education to equip students to use computational thinking and creativity to understand and change

the world. Computing has deep links with mathematics, science, and design and technology, and provides insights into both natural and

artificial systems.

Irresistible and enriching learning by a wide range of educational experiences to engage, cultivate and extend lifelong effect of learning. All

students take part in challenging opportunities by completing The Bebras challenge and CyberFirst CyberStart competitions. The CyberFirst

Competition provides a fun and challenging environment to inspire the next generation of young people to consider a career in cyber security.

Students are given the opportunity to enter a range of National Competitions such as and CyberFirst and Cyber Centurion events.

Due to the forever changing world of technology the curriculum and skills need is taken into account. Staff are involved with the local primary
schools and the whole community including Computing at School and exam boards to ensure that the curriculum is achievable and forward
thinking, to ensure that students are equipped for their future pathways.

Assessment

3

Please see website for the formal internal assessment record.
Paper 1 On-screen exam, subject coverage:
 Fundamentals of programming
 Fundamentals of data structures
 Fundamentals of algorithms
 Theory of computation
 Written exam - students will be issued a preliminary material, a skeleton program (available in each of the programming languages) and,

where appropriate, test data, for use in the exam. 2 hours 30 minutes
 40% of A level exam

Paper 2 Written exam, subject coverage:
 Fundamentals of data representation
 Fundamentals of computer systems
 Fundamentals of computer organisation and architecture
 Consequences of uses of computing
 Fundamentals of communication and networking
 Fundamentals of databases
 Big Data
 Fundamentals of functional programming
 legal and environmental impacts of digital technology on wider society, including issues of privacy
 Written exam: 2 hours 30 minutes
 40% of A level exam
 Compulsory short-answer and extended-answer questions
 NEA Programming project
 20% of A level

Homework
Repl.it set homework for coding and theory practice
Clubs and/or intervention
Lunchtime drop-in sessions available. Extra revision available after school as needed.

Parental/Carer support
Parents/Carers can find the subject content and specification at: https://filestore.aqa.org.uk/resources/computing/specifications/AQA-7516-
7517-SP-2015.PDF

Helpful sources of information
https://www.aqa.org.uk/subjects/computer-science-and-it/as-and-a-level/computer-science-7516-7517 - exam board subject homepage
https://repl.it – programming practice challenges
https://w3schools.com – tutorials, references for programming languages

https://filestore.aqa.org.uk/resources/computing/specifications/AQA-7516-7517-SP-2015.PDF
https://filestore.aqa.org.uk/resources/computing/specifications/AQA-7516-7517-SP-2015.PDF
https://www.aqa.org.uk/subjects/computer-science-and-it/as-and-a-level/computer-science-7516-7517
https://repl.it/
https://w3schools.com/

4

www.codeacademy.com – learn technical skills in an interactive environment

Connections to future pathways
Careers: Software Developer, Information Security Analysts, Computer systems analyst, Computer and information systems manager,
Computer and information research scientists, Computer network architect, Network and computer systems administrators, Database
administrator, Web developer, Computer support specialist.

Future learning: Higher Apprenticeship, Degree

Year 12 Overview

Term Knowledge Assessment Connections to learning

Autumn
1

Computational thinking
Rationale: Understanding how computational thinking is the basis for problem solving. Understand the need to have different data

types in theory will help when using text-based programming languages.

 Different data types and how they are
used

 Basic arithmetic operations in a typical
programming language

 Basic string handling operations,
variables and constants

 Pseudocode solutions to simple
problems

 Relational operators and use of
Boolean operations AND, OR, NOT

 Nested selection statements
 Use of three different types of iterative

statement: WHILE, REPEAT and FOR
 Random number generation
 Structured approach to program

design and construction
 Construct and use hierarchy charts

when designing programs
 Data structure, 1- and 2-dimensional

arrays in the design of solutions to

 Teacher/pupil questioning
 Exam style question practice

(homework’s and in class)
 Knowledge Quizzes.
 Application of knowledge

understanding and skills using
pseudocode and programming

4.1 Fundamentals of programming
4.1.1 Programming
4.1.1.1 Data types
4.1.1.2 Programming concepts
4.1.1.3 Arithmetic operations
4.1.1.6 Constants and Variables
4.1.1.7 String handling
4.1.2 Programming paradigms
4.1.1.4 Relational operators
4.1.1.5 Boolean operators
4.1.1.8 Random number generation
4.1.2.3 Object-orientated programming (in
brief)
4.2 Fundamentals of data structures
4.2.1 Data structures and abstract types
4.2.1.1 Data structures
4.2.1.2 Single and multi-dimensional
arrays
4.2.1.3 Fields, records and files

http://www.codeacademy.com/

5

simple problems and the advantages
of the structured approach

 “Computational thinking” and the skills
involved

 Strategies for problem-solving, simple
logic problems and checking solutions

 Concept of abstraction and examples
 The purpose of testing, a test plan

using test data covering normal
(typical), boundary and erroneous data,
hand-trace algorithms

 Finite state machine, uses, draw and
interpret simple state transition
diagrams

 Draw a state transition table for a finite
state machine with no output

 Teacher/pupil questioning
 Application of knowledge

understanding and skills using
pseudocode and programming

 Exam style question practice
(homework’s and in class)

4.4 Theory of computation
4.4.1 Abstraction and automation
4.4.1.2 Following and writing algorithms
4.4.1.1 Problem Solving
4.4.2 Regular languages
4.4.2.1 Finite state machines (FSMs) with
and without output
4.13 Systematic approach to problem
solving
4.13.1 Aspects of software development
 4.13.1.4 Testing

Autumn
2

Programming Concepts
Rationale: Students need a theoretical understanding of all the topics in this section for the exams even if the programming

language(s) they have been taught do not support all topics. Understand Understanding the fundamentals of programming concepts.

 Subroutines, their uses and
advantages

 Subroutines that return values to the
calling routine

 Arguments/parameters to pass data
within programs

 Contrast the use of local and global
variables

 Define the terms field, record, file
 Read from and write to a text file and

read from and write to a binary file
 Use of exception handling in a program
 Categorise numbers as natural,

integer, rational, irrational, real or
ordinal.

 Teacher/pupil questioning
 Exam style question practice

(homework’s and in class)
 Application of knowledge

understanding and skills using
pseudocode and programming

4.1 Fundamentals of programming
4.1.1 Programming
4.1.1.10 Subroutines
4.1.1.11 Parameters of subroutines
4.1.1.12 Returning a value from a
subroutine
4.1.1.13 Local variables in a subroutine
4.1.1.14 Global variables in a
programming language
4.1.1.9 Exception handling
4.2 Fundamentals of data structures
4.2.1 Data structures and abstract types
4.2.1.3 Fields, records and files
4.5 Fundamentals of data
representation

6

 Understand how the base of a number
affects the format of the value it
represents.

 Convert between decimal, binary and
hexadecimal number systems.

 Data is stored and processed in a
computer system

 Bits and bytes, and use of names,
symbols and corresponding powers of
2 for binary prefixes (Ki, Mi,Ti etc.)

 Differentiate between the character
code of a decimal digit and its pure
binary representation

 ASCII and Unicode coding systems
and why Unicode was introduced

 Methods used for error-checking and
correction

 Add and multiply together two
unsigned binary numbers

 Convert between signed binary and
decimal and vice versa

 Represent positive and negative
numbers in two’s complement and
specify the range of n bits

 Subtraction using two’s complement
 Numbers with a fractional part can be

represented in binary
 Fixed point binary to represent a real

number in a given number of bits
 Fractional part can be represented in

floating point form
 Normalise un-normalised floating point

numbers with positive or negative
mantissas

 Calculate the absolute and relative
errors of numerical data stored and
processed in computer systems

 Compare fixed- and floating-point form

4.5.1 Number systems
4.5.2 Number bases
4.5.3 Units of information
4.5.4 Binary number system
4.5.6 Representing images, sound and
other data.

7

 Bitmapped images are represented in
terms of size in pixels, resolution and
colour depth. Storage requirements.

 Images contain metadata and be able
to describe typical metadata

 Audio signals can be stored and
transmitted in digital form

 Sampling rate and resolution and the
quality and size of an audio signal

 Error detection methods when
transmitting signals

 MIDI an alternative way of transmitting
audio

Spring
1

Computer systems
Rationale: Understand the role of hardware and software and how the structure of computer architecture and organisation is affected.

 Writing and interpreting algorithms
using pseudocode

 Internal components of a computer
system

 The role of the processor, main
memory, buses and I/O controllers and
how these components are connected
and how communication is controlled
between them

 The most appropriate computer
architecture for a given application

 Concept of addressable memory, the
stored program concept

 The role and operation of a processor
and its major components

 The stages of the Fetch-Execute cycle
and determine the roles of the various
processor registers in facilitating this

 Factors that affect the performance of
a processor

 The role of an instruction set within
processors

 Application of knowledge
understanding and skills using
pseudocode and programming

 Teacher/pupil questioning
 Exam style question practice

(homework’s and in class)

4.1 Fundamentals of programming
4.2 Fundamentals of data structures
4.3 Fundamentals of algorithms
4.3.4 Searching algorithms
4.3.5 Sorting algorithms
4.4 Theory of computation
4.4.1 Abstraction and automation
4.4.1.2 Following and writing algorithms
4.5 Fundamentals of data
representation
4.5.6 Representing images, sound and
other data
4.6 Fundamentals of computer systems
4.6.1 Hardware and software
4.6.1.4 Role of an OS
4.6.2 Classification of programming
languages
4.7 Fundamentals of computer
organisation and architecture
4.7.3 Structure and role of the processor
and its components

8

 The format of processor instructions
and the role various components
perform

 Direct and immediate addressing within
processor instructions

 How and why image, sound and text
data are compressed

 Lossy and lossless methods of
compression in terms of size and
accuracy of data

 Caesar and Vernam encryption
techniques in their suitability for
encrypting messages

 Hardware and software and
understand the relationship between
them

 System software and application
software

 The need for, and attributes of,
different types of software

 Function of operating systems, utility
programs, libraries and translators

 The role of an operating system is to
create a virtual machine to hide the
complexities of operation from the user

 The importance of resource
management and processor
scheduling

 Classification of programming
languages into low- and high-level
languages

 Low-level languages: machine-code
and assembly language

 ‘Imperative high-level language’ and its
relationship to low-level programming

Spring
2

Fundamentals of computer organisation and architecture
Rationale: How the structure and role of the processor and its components are within the architecture of the computer.

9

 Basic machine code operations
expressed in mnemonic-form assembly
language

 Apply immediate and direct addressing
modes

 Characteristics and principles of:
 Barcode readers
 Digital cameras
 Laser printers
 RFID
 The need for secondary storage within

a computer system
 The main characteristics and principles

of operations of:
 Hard disk
 Optical disk
 Solid-State Disk (SSD)
 The role of an assembler, compiler and

interpreter
 Bytecode is produced as the final

output by some compilers and how it is
subsequently used

 Source and object (executable) code
 Drawing and interpreting of logic gate

circuit diagrams involving multiple
gates, half-adder and a full-adder

 Edge-triggered D-type flip-flop as a
memory unit

 Use of Boolean identities and De
Morgan’s laws to manipulate and
simplify Boolean expressions

 Boolean expressions for a given logic
gate circuit, and vice versa

 Teacher/pupil questioning
 Exam style question practice

(homework’s and in class)
 Knowledge Quizzes
 Application of knowledge

understanding
 Summative end of year 12 exam paper

in the style of the A Level paper

4.6 Fundamentals of computer systems
4.6.2 Classification of programming
languages
4.6.3 Types of program translator
4.6.4 Logic gates
4.6.5 Boolean algebra
4.7 Fundamentals of computer
organisation and architecture
4.7.3 Structure and role of the processor
and its components
4.7.4 External hardware devices
4.7.4.1 Input and output devices

Summer
1

Networks
Rationale: Understand the fundamentals of communication and networking. Know what network architecture is and why it is
required.

 Serial and parallel transmission

methods
 Teacher/pupil questioning
 Exam style question practice

(homework’s and in class)

4.9 Fundamentals of communication
and networking
4.9.1 Communication

10

 Synchronous and asynchronous data
transmission

 Baud rate, bit rate, bandwidth, latency,
protocol

 Basic concepts of OOP
 Class
 Object
 Instantiation
 Encapsulation
 Inheritance, polymorphism and

overriding
 Concepts of aggregation
 Composition
 Association
 Object-oriented design principles:
 Encapsulate what varies
 Favour composition over inheritance
 Program to interfaces, not

implementation
 Draw and interpret class diagrams
 Aspects of software development
 Prototyping/agile approach that may be

used in the analysis, design and
implementation of a system

 Criteria for evaluating a computer
system

 Star and bus topologies for a local area
network, difference between physical
and logical network topologies

 Operation of physical star and bus
network topologies, advantages and
disadvantages of each

 Peer-to-peer and client-server
networking, situations might be used

 Advantages and drawbacks of cloud
computing

 Application of knowledge
understanding

4.9.2 Networking
4.9.2.1 Network topology
4.9.2.2 Types of networking between
hosts
4.1 Fundamentals of programming
4.1.2 Programming Paradigms
4.1.2.2 Procedural-oriented programming
4.1.2.3 Object-oriented programming
4.13 Systematic approach to problem
solving
4.13.1 Aspects of software development

Summer
2

Databases
Rationale: Understand the fundamentals of databases. The concept of databases and how SQL is used within programming to

access information.

11

 Purpose of Wi-Fi and the components
required for wireless networking. How
wireless networks are secured.
Wireless protocols CSMA/CA and
RTS/CTS

 The purpose of SSIDs
 Developments in digital technologies

enable organisations to monitor
behaviour, amass and analyse
personal information

 The potential for individual computer
scientists and software engineers, the
challenges facing legislators in the
digital age, as well as the
responsibilities

 The current capacity to distribute,
publish, communicate and disseminate
personal information.

 Software and their algorithms embed
moral and cultural values

 Entity descriptions representing a data
model in the form: Entity1 (Attribute1,
Attribute2…). Representing a data
model including: attribute, primary key,
composite primary key, foreign key

 Concept of a relational database,
normalise relations to third normal form

 SQL to retrieve data from multiple
tables of a relational database

 Teacher/pupil questioning
 Exam style question practice

(homework’s and in class)
 Application of knowledge

understanding and skills using SQL

4.9 Fundamentals of communication
and networking
4.9.1 Communication
4.9.2 Networking
4.9.2.3 Wireless networking
4.8 Consequences of uses of
computing
4.8.1 Individual (moral), social (ethical),
legal and cultural issues and opportunities
4.9 Fundamentals of communication
and networking
4.10 Fundamentals of Databases
4.10.1 Conceptual data models and entity
relationship modelling
4.10.2 Relational databases
4.10.3 Database design and normalisation
techniques
4.10.4 Structured Query Language (SQL)
4.10.5 Client server databases

Year 13 Overview

Term Knowledge Assessment Connections to learning

12

Autumn
1

 Programming Project
Rationale: The programming project allows students to develop their practical skills in a problem solving context by coding a

solution to a given problem and producing a report documenting the development of the solution.

 Application of programming skills to
given programming project

 concept of an abstract data type
 concept and uses of a queue
 creation and maintenance of data

within a queue (linear, circular, priority)
 Using a linear, circular and priority

queue
 Add an item
 Remove an item
 Test for an empty queue
 Test for a full queue
 A list may be implemented as a static

or dynamic data structure
 Items may be added to or deleted from

a list
 Concept and uses of a stack
 Creation and maintenance of data

within a stack
 Push, pop, peek (or top), test for

empty stack, test for full stack
 A stack frame is used with subroutine

calls to store return addresses,
parameters and local variables

 A hash table and its uses
 Simple hashing algorithms
 Collision and how collisions are

handled using rehashing
 Concept of a dictionary
 Simple applications of a dictionary
 A graph as a data structure used to

represent complex relationships and
typical uses

 Graph, weighted graph, vertex/node,
edge/arc, undirected graph, directed
graph

 Application of knowledge
understanding and skills using
pseudocode and programming

 This will challenge their knowledge
and application of the project

4.2 Fundamentals of Data Structures
4.2.1.4 Abstract data types/data
structures
4.2.2 Queues
4.2.2.1 Queues
4.2.1.4 Abstract data types/data
structures
4.2.1.2 Single- and multi-dimensional
arrays (or equivalent)
4.1 Fundamentals of programming
4.1.1.15 Role of stack frames in
subroutine calls

4.2.3.1 Stacks

4.2.6.1 Hash tables
4.2.7.1 Dictionaries

 4.2.4.1 Graphs

13

 An adjacency matrix and an adjacency
list may be used to represent a graph

 Compare the use of adjacency
matrices and adjacency lists

 Draw and interpret simple state
transition diagrams for FSMs with no
output and with output

 Draw and interpret simple state
transition tables for FSMs with no
output and with output

 Concept of a set and the notations
used for specifying a set and set
comprehension

 Compact representation of a set
 Concept of finite and infinite sets,

countably infinite sets, cardinality of a
finite set, Cartesian product of sets

 The meaning of the terms subset,
proper subset, countable set

 Set operations: membership, union,
intersection, difference

 Regular expression is a way of
describing a set

 Regular expressions allow particular
types of languages to be described in
a convenient shorthand notation

 Form and use simple regular
expressions for string manipulation
and matching

 The relationship between regular
expressions and finite state machines

 Write a regular expression to
recognise the same language as a
given FSM and vice versa

 The structure and use of Turing
machines that perform simple
computations

 Application of knowledge
understanding and skills

4.4 Theory of Computation
4.4.2 Regular languages
4.4.2.1 Finite state machines (FSMs) with
and without output
4.4.2.2 Maths for regular expressions
4.4.2.3 Regular expressions
4.4.2.4 Regular language
4.4 Theory of Computation
4.4.5 A model of computation
4.4.5.1 Turing machine
4.4.3 Context-free languages
4.4.3.1 Backus-Naur Form (BNF)/syntax
diagrams

4.3 Fundamentals of Algorithms
4.3.2 Tree-traversal
4.3.2.1 Simple tree-traversal algorithms
4.3.3 Reverse Polish
 4.3.3.1 Reverse Polish – infix

transformations

14

 A Turing machine can be viewed as a
computer with a single fixed program

 Transition rules using a transition
function or state transition diagram

 Hand-trace a simple Turing machine
 The importance of Turing machines

and the Universal Turing machine to
the subject of computation

 Backus-Naur Form (BNF) can be used
to represent language syntax and
formulate simple production rules

 BNF can represent some languages
that cannot be represented using
Regular Expressions

 A syntax diagram to represent an
equivalent BNF expression

 Convert simple expressions in infix
form to Reverse Polish Notation (RPN)
and vice versa

 Be aware of why and where RPN is
used

Autumn
2

Structure of the Internet
Rationale: Understand the structure of the Internet and how standards and protocols are put in place to ensure that information is

accessible and secure.

 Application of programming skills to

given programming project
 Application of knowledge

understanding and skills using
pseudocode and programming

 A tree is a connected, undirected
graph with no cycles

 A binary tree is a rooted tree in which
each node has at most two children

 Typical uses for rooted trees
 Concept of a vector and notations for

specifying a vector as a list of
numbers, as a function or as a
geometric point in space

 A vector using a list, dictionary or array
data structure

 Teacher/pupil questioning
 Application of knowledge

understanding and skills using
pseudocode and programming

 Exam style question practice
(homework’s and in class)

4.2 Fundamentals of Data Structures
4.2.1.4 Abstract data types/data
structures
4.2.5.1 Trees (including binary trees)
4.2.8.1 Vectors
4.1 Fundamentals of programming
4.1.1.16 Recursive techniques
4.4 Theory of Computation
4.4.4 Classification of algorithms
4.4.4.1 Comparing algorithms
4.3 Fundamentals of Algorithms

15

 Perform operations on vectors:
addition, scalar vector multiplication,
convex combination, dot or scalar
product

 The dot product to find the angle
between two vectors

 The use of recursive techniques in
programming languages

 Solve simple problems using recursion
 Trace recursive tree-traversal

algorithms: pre-order, post-order, in-
order

 The concept of a function as a
mapping from one set of values to
another

 The concept of constant, linear,
polynomial, exponential and
logarithmic functions

 The notion of permutation of a set of
objects or values

 The Big-O notation to express time
complexity

 Derive the time complexity of an
algorithm

 Trace and analyse the time complexity
of the linear search and binary search
algorithms

 Trace and analyse the time complexity
of the binary tree search algorithm

 Trace and analyse the time complexity
of the bubble sort algorithm

 Trace and analyse the time complexity
of the merge sort algorithm

4.3.2 Tree-traversal 4.3.2.1 Simple tree-
traversal algorithms
4.4.4.2 Maths for understanding Big-0
notation
4.4.4.3 Order of complexity
4.4.4.4 Limits of computation
4.4.4.5 Classification of algorithmic
problems
4.4.4.6 Computable and non-computable
problems
4.3.4 Searching algorithms
4.3.5 Sorting algorithms

 The structure of the Internet
 ‘Uniform Resource Locator’ (URL) in

the context of networking
 ‘Domain name’ and ‘IP address’
 How domain names are organised

 Teacher/pupil questioning
 Exam style question practice

(homework’s and in class)
 Application of knowledge

understanding and skills

4.9 Fundamentals of communication
and networking
4.9.3 The Internet
4.9.3.1 The Internet and how it works
4.9.3.2 Internet security

16

 The purpose and function of the
Domain Name Server (DNS) system

 The service provided by Internet
registries and why they are needed

 The role of packet switching and
routers

 The main components of a packet
 Where and why routers and gateways

are used
 How routing is achieved across the

Internet
 How a firewall works
 Symmetric and asymmetric encryption

and key exchange
 How digital signatures and certificates

are obtained and used
 Worms, Trojans and viruses and the

vulnerabilities that they exploit
 Improved code quality, monitoring and

protection can be used against such
threats

 The roles of the four layers in the
TCP/IP protocol stack and sockets

 MAC addresses
 The common protocols and the well‐

known ports they use
 Transferring files using FTP as an

anonymous and non‐anonymous user
 Secure Shell (SSH) is used for remote

management including the use of
application level protocols for sending
and retrieving email

 The role of an email server in sending
and retrieving email

 The role of a web server in serving up
web pages in text form

 The role of a web browser in retrieving
web pages and web page resources
and rendering these accordingly

4.9.4 The Transmission Control
Protocol/Internet Protocol (TCP/IP)
protocol
4.9.4.1 TCP/IP
4.9.4.2 Standard application layer
protocols
4.9.4.3 IP address structure
4.9.4.4 Subnet masking
4.9.4.5 IP standards
4.9.4.6 Public and private IP addresses
4.9.4.7 Dynamic Host Configuration
Protocol (DHCP)
4.9.4.8 Network Address Translation
(NAT)
 4.9.4.9 Port forwarding

17

 An IP address is split into a network
identifier and a host identifier part

 A subnet mask is used to identify the
network identifier part of the IP
address

 There are currently two standards of
IP address, (v4 and v6) and why v6
was introduced

 Routable and non‐routable IP
addresses

 The purpose and function of the
Dynamic Host Configuration Protocol
(DHCP) system

 Basic concepts of Network Address
Translation (NAT) and port forwarding
and why they are used

Spring 1
Fundamentals of communication and networking

Rationale: The necessity of fundamentals of communication and networking. Whether thick or thin client is best.

 tTace depth-first and breadth-first
algorithms and typical applications of
each

 Trace Dijkstra’s shortest path
algorithm

 Applications of the shortest path
algorithm

 Algorithmic complexity and hardware
impose limits on what can be
computed

 Algorithms may be classified as being
either tractable or intractable

 Some problems cannot be solved
algorithmically

 The Halting problem, and its
significance for computation

 Teacher/pupil questioning
 Exam style question practice

(homework’s and in class)
 Application of knowledge

understanding and skills using
pseudocode and programming

4.3 Fundamentals of algorithms
4.3.1 Graph-traversal
4.3.1.1 Simple graph-traversal algorithms
4.3.6 Optimisation algorithms
4.3.6.1 Dijkstra’s shortest path algorithm
4.4 Theory of Computation
4.4.4.4 Limits of computation
4.4.4.5 Classification of algorithmic
problems
4.4.4.6 Computable and non-computable
problems
 4.4.4.7 Halting problem

 The client server model
 The WebSocket protocol and know

why and where it is used

 Teacher/pupil questioning
 Exam style question practice

(homework’s and in class)

4.9 Fundamentals of communication
and networking
4.9.4 The Transmission Control
Protocol/Internet Protocol (TCP/IP)

18

 The principles of web CRUD
applications and Representational
State Transfer (REST)

 Compare JSON (JavaScript Object
Notation) with XML

 Compare and contrast thin‐client
computing with thick‐client computing

 Application of knowledge
understanding and skills using
pseudocode and programming

protocol
4.9.4.10 Client server model
4.9.4.11 Thin- versus thick-client
computing
4.9 Fundamentals of communication
and networking
4.9.3 The internet
4.9.4 The Transmission Control
Protocol/Internet Protocol (TCP/IP)
 protocol

Spring 2

Preparing for the exams
Rationale: You will be using the lessons to look at exam techniques, go through past papers, revising different topics and

reinforcing your learning in preparation for your two exams papers. Practice writing algorithms and using to answer questions.

 Exam skills and misconception
 What is meant by a programming

paradigm
 Function type, domain and co-domain
 What is meant by a first-class object

and how such an object may be used
 Evaluate simple functions
 Functional composition to combine two

functions
 Partial function application
 A function takes only one argument

which may itself be a function
 Higher-order functions, including map,

filter and fold
 A list is a concatenation of a head and

a tail, where the head is an element of
a list and the tail is a list

 An empty list
 Apply list operations:
 Return head/tail of list
 Test for empty list
 Return length of list
 Construct an empty list
 Prepend / append an item to a list
 That Big Data is a term used to

describe data whose volume is too

 Teacher/pupil questioning
 Exam style question practice

(homework’s and in class)
 Application of knowledge

understanding and skills using
pseudocode and programming

 Exampro

4.12 Fundamentals of functional
programming
4.12.1 Functional programming paradigm
4.12.2 Writing functional programs
4.12.3 Lists in functional programming

4.11 Big Data

19

large to fit on a single server and is
generally unstructured

 Features of functional programming
which make it suitable for analysing
Big Data

 Fact-based model for representing
data

 Graph schema for capturing the
structure of the dataset

Summer
1

Getting Ready for the exam
 Rationale: You will be using the lessons to look at exam techniques, go through past papers, revising different topics and
reinforcing your learning in preparation for your two exams papers. Practice writing algorithms and using to answer questions.

 Exam practise & skills Practise exam papers and questions
 Timed responses
 Marking activities
 Examiner’s report
 Exampro

Summer2
External Exams

External exams begin

